Atomic Bomb Survivor Studies History, Dosimetry, Risk Estimation

2011 Radiation Epidemiology and Dosimetry Course
Bethesda, MD
May 19, 2011

Dale L. Preston Hirosoft International Eureka, CA

Outline

1. ABCC/RERF background

- Immediate effects of the bombs
- Early studies
- Major cohorts

2. Dosimetry

- Survivor shielding and location
- Evolving dose estimates
 T57D → DS02
- Dose uncertainties

3. Risk Estimation

- Relative versus absolute risks
- Describing (smoothing) risk patterns
 - Relative risk and excess rate models
 - Dose response
 - Effect modification

- Issues

- Time-since-exposure vs attained age
- Latent periods
- Interactions
- · Interpreting site-specific risks

Nature of the bombs

- Hiroshima (Little boy)
 - Unique U²³⁵ gun-type device
 - 16kt yield
 - Height of burst 600m
 - Hypocenter near city center

- Plutonium implosion device
- 21 kt yield
- Height of burst 503m
- Hypocenter in Urakami valley a residential / industrial area near
 Nagasaki University about 1.5km north of city center

3

Short-term effects

- Result of
 - Blast (50% of energy)
 - Heat (35% of energy)
 - Scorched wood up to 3.5km
 - Radiation (15% of energy)
- Cities largely destroyed
 - Wooden structures burned up to ~2.5km from hypocenter
 - Blast effects apparent over similar distance range
- · Populations in areas near hypocenter decimated
 - Hiroshima 110,000 -140,000 deaths
 - Nagasaki 70,000 deaths
 - > 60% mortality within 1km of hypocenter

Health Effects Research 1945 - 1946

- Japanese research groups
 - Entered cities within days of bombings
 - Carried out various surveys of injuries and deaths
- US research groups
 - Medical teams began arriving in September 1945
 - Efforts directed at cataloging acute radiation effects
- US Japan Joint Commission
 - Characterize extent of early mortality
 - Nature of acute effects
 - Nausea
- Orapharyngeal lesions
- Epilation
- Leukopenia
- Flash burns
- Bleeding

Health Effects Research 1947-1955 The Atomic Bomb Casualty Commission (ABCC)

- President Truman authorizes NAS to create and manage ABCC
 - "...undertake a long range, continuing study of the biological and medical effects of the atomic bomb on man."
- Jim Neel, Jack Schull and others develop and implement geneticeffects studies
 - Multiple outcomes
 - Major malformations, premature birth, low birth weight, sex-ratio
 - 72,000 registered pregnancies 1948 -1953
 - Midwife reports, at-birth exams, nine-month exams
 - Results appeared in 1956
 - No apparent effects of radiation exposure (defined by distance and acute effects) on any outcome considered

7

Health Effects Research 1947-1955The Atomic Bomb Casualty Commission (ABCC)

- Leukemia
 - Japanese physicians noticed increase in childhood leukemia cases in late 1940's
 - First published report in 1952
 - · Descriptive analyses
 - · III-defined population
 - · No real risk estimates
- 1950 national census
 - ABCC managed data processing
 - Special questionnaire for people who were in or near the cities at the time of the bombs used to define ABCC/RERF Master Sample

Health Effects Research 1947-1955 The Atomic Bomb Casualty Commission (ABCC)

- Gil Beebe and NAS
 - Developed ideas for cohort-based studies of cancer and other outcomes
 - Paralleled ideas on development do WWII vets follow-up study (Medical Follow-up Agency)
 - Developed ties to Yale and UCLA for recruitment of scientific staff
- · Calls for end to ABCC studies
 - Major genetic studies were completed with no compelling evidence of hereditary effects
 - Leukemia excess risk appeared to be declining
 - Studies being carried out in ad-hoc manner
 - Costs for program rising
 - Staff morale low

9

Francis Committee

(Thomas Francis, Felix Moore, Seymour Jablon)

- NAS-organized committee to assess what should be done about ABCC research
- Recommendations
 - Reorganized program should continue
 - Unified study plan
 - Focus on fixed cohorts of survivors and their children with internal comparison groups
 - Mortality follow-up
 - Pathology (autopsy) program
 - Clinical studies
 - · Highlighted need for dose estimates

ABCC-RERF cohorts In-utero cohort

Pooled IU cohort 3,638 people

- Pooled cohort combines overlapping clinical (1,606 members) and mortality (2,802 members) cohorts.
- Mortality and cancer incidence data are available for all members of the cohort.

13

ABCC/RERF Follow-up Programs

- Mortality
 - Based on mandatory nation-wide family registration
 - Updated on a three-year cycle
- Cancer incidence
 - Hiroshima & Nagasaki tumor registries (1958 present)
 - ABCC pathology program 1958 1972
 - Hiroshima & Nagasaki tissue registries 1973 present
- · Leukemia and related disorders
 - Leukemia registry 1950 1987
 - Hiroshima & Nagasaki Tumor Registries 1958 present
- Clinical Examinations
 - Biennial exams
 - 70-80% participation through 25 AHS exam cycles
 - Adapted for use in F1 clinical study (FOCS)
- Mail Surveys
 - 1965 (Ni-hon-san study men), 1968 (women), 1978, 1991, 200?

ABCC Research 1958 - 1975

- Dosimetry (Auxier, Kerr, Fujita)
 - Development of location and shielding information
 - Introduction of first broadly accepted dosimetry system (T65D)
- Periodic LSS cancer mortality reports (Land, Beebe, Jablon, Kato)
 - Methodological developments & risk estimation
- Clinical studies
 - Cardiovascular disease (Ni-Hon-San), Non-specific aging
 - Thyroid and skin diseases
 - Radiation cataract
- Cytogenetics studies (Awa)
- In-utero
 - Physical growth and development
 - IC
 - Mortality
- F1
 - Leukemia incidence
 - General mortality

15

RERF Research 1975-1995

- Improved LSS cancer mortality reports
 - Dose-response shape & effect modification
- Solid cancer and leukemia incidence reports
- Breast cancer incidence studies (Land, Tokunaga)
 - Precursor to more recent site-specific incidence papers
- · F1 studies
 - Biochemical and cytogenetics studies
- In-utero
 - Mental retardation, School performance
 - Cancer mortality, leukemia incidence

RERF Research 1995 - present

- Increasing emphasis on site-specific cancer incidence
- Emerging evidence of non-cancer mortality risks
- · Analyses of clinical data
 - Noncancer disease morbidity
 - Longitudinal laboratory measurements (blood pressure, cholesterol, inflammatory markers)
 - Cataracts

Dosimetry

Location

- Specified as coordinates on fairly crude US army maps
 - Sought corroboration of location
 - Recorded to nearest 10m in each coordinate if detailed shielding history obtained and nearest 100m for others

External Shielding

- Crude shielding category information available on virtually all people of interest
- Detailed shielding histories for most survivors within 1.6km in Hiroshima and 2 km in Nagasaki
- Self shielding (organ dose)
 - Available for survivors with detailed shielding histories

Dosimetry History

- Early analyses based on categories defined by distance and acute effects
- Tentative 1957 Dosimetry (T57D)
 - Declassified gamma and neutron "air dose" curves by city
 - Crude allowance for shielding
 - Never used for routine analyses
- T65D
 - City-specific gamma and neutron equations for free-in-air kerma versus distance
 - Limited validation from physical measurements (TLD and Co⁶⁰ activation)
 - External shielding effects described as transmission factors
 - · House shielding based on nine-parameter model or average values
 - · Globe method (look at shadows in model conditions)
 - · Nagasaki factory model

23

Dosimetry History

- DS86
 - Motivated by concerns about T65D neutrons
 - Involved review of all aspects of bombs, transport, and shielding
 - Used (then-)modern monte-carlo transport codes
 - Provided shielded kerma and dose estimates for 15 tissues with up to six components
 - Reduced neutron doses (especially for Hiroshima) and transmission factors for houses
 - Some validation by measurements, but some questions about neutron doses lingered

Dosimetry History

- DS02
 - Possibility of increased Hiroshima neutrons at distance received much attention
 - Extensive program of validation measurements and interlaboratory comparisons
 - Additional review of bomb parameters
 - · Hiroshima yield increased from 15 to 16kt
 - Hiroshima height of burst 580 → 600
 - Nagasaki prompt gamma per kt increased by 9%
 - Further review of shielding effects
 - · New models for large wooden buildings and Nagasaki factories
 - · Allowance for distal terrain shielding

25

Dose Uncertainty

- Uncertainty in survivor dose estimates recognized from the beginning, but
- Until recently little effort to allow for or assess impact of uncertainty on risk estimates
- Types of uncertainty
 - Shared errors yield, shielding parameters etc.
 - Grouping (Berkson) errors
 - Error in individual location / shielding information (classical error)
- Currently doses are corrected for 35% random errors using a regression calibration method in which D_{est} is replaced by E(D_{true}| D_{est})
- · Can expect further advances in next few years
 - More use of biodosimetry data
 - Explicit consideration of Berkson, classical, and shared error effects

The Old Debate Relative versus Absolute Risks

 Do excess risks increase or become relatively less important as time goes by?

- By early 1980's it was agreed that relative risk provided a better description
- Time-constant (excess) relative risk became standard risk summary

27

Evolving Understandings Excess Risk is Not a Number

(Relative) risk depends on gender and age at exposure

LSS Solid Cancer Incidence

- Are excess relative risks constant in attained age (time) given age at exposure and sex?
- How should we interpret gender differences in the ERR?

Evolving Understandings Describing Excess Risks

Excess relative risk (ERR) model

$$\lambda_o(a,s,b)[1+\rho(d)\varepsilon_R(s,e,a)]$$

Excess absolute rate (EAR) model

$$\lambda_o(a,s,b) + \rho(d) \varepsilon_A(s,e,a)$$

 $\lambda_o(a,s,b)$ Baseline (zero dose) risk function a age at risk; s gender; and b birth cohort

ho(d) Dose-response shape , e.g. linear, linear-quadratic, threshold, ...

 $\varepsilon(s,e,a)$ Effect modification function e age at exposure

29

Evolving Understandings ERR versus EAR description

 ERR and EAR are (in principle) equivalent descriptions of the excess risk

$$\varepsilon_R(s,e,a) = \frac{\varepsilon_A(s,e,a)}{\lambda_0(a,s,b)}$$

- Both ERR and EAR descriptions are important
- · ERR and EAR provide complimentary information
 - Patterns in ERR effect modifiers may reflect factors such as gender and birth cohort effects in baseline rates
- Description may be simpler or more informative on one scale than the other

Describing Gender and Age-Time Effects

- Smoothing the excess is essential to understanding
 - Subset analyses have little power
 - Uncertainty can make it difficult to see patterns
- Requires choice of variables and model form
 - RERF analyses generally based on log-linear descriptions (when there is enough data)

$$\varepsilon(s,e,a) = \exp(\beta_s + \theta e + \gamma \log(a))$$

 $\exp(\beta_f) / \exp(\beta_m)$ $\exp(10 \ \theta)-1$ female:male excess (relative) risk ratio
% change per decade increase in age at exposure
power of age at risk

31

Describing Gender and Age-Time Effects

- Extensions of basic model possible
 - Sex-dependent age and age at exposure effects
 - Other functions of age and age at exposure
- However, available data usually too limited to support such detailed descriptions

LSS Solid Cancer Incidence 1958-94

Age at exposure	People	Person years	Cases	Estimated Excess	AR%*
		Male			
0-19	21,571	632,341	2,409	150	13%
20-39	8,522	229,518	2,569	86	8%
40+	12,809	178,419	2,991	61	5%
Total	42,902	1,040,278	7,969	297	9%
		Female			
0-19	24,169	755,387	2,186	240	24%
20-39	21,561	679,452	4,423	233	11%
40+	16,795	289,614	2,870	83	6%
Total	62,525	1,724,453	9,479	556	13%
Total	105,427	2,764,731	17,448	853	11%
By colon d	ose				
Colon Dose	People	Person years	Cases	Estimated Excess	AR%
< 0.005	60,792	1,598,944	9,597	3	0%
- 0.1	27,789	729,603	4,406	81	2%
- 0.2	5,527	145,925	968	75	8%
- 0.5	5,935	153,886	1,144	179	16%
- 1	3,173	81,251	688	206	30%
- 2	1,647	41,412	460	196	43%
- 2		10 711	185	111	60%
2+	564	13,711	100	111	00 /0

- Information on gender and age-time patterns depends (only) on radiation-associated ("excess") cases
- · Excess cases not explicitly identified
- Number of relevant cases is relatively small, especially for specific sites

LSS Leukemia Mortality 1950-2000

	exposure				
Age at exposure	People	Person years	Cases	Estimated Excess	AR%*
		Male			
0-19	16,827	783,098	60	26	589
20-39	6,411	229,330	49	12	429
40+	12,449	227,441	47	13	419
Total	35,687	1,239,869	156	52	489
		Female			
0-19	18,569	891,288	42	16	519
20-39	16,750	702,633	57	17	419
40+	15,605	350,566	41	9	369
Total	50,924	1,944,487	140	43	439
Total	86,611	3,184,355	296	94	46%
By marrov	v dose	Davasu		Estimated	
Marrow Dose	People	Person years	Cases	Excess	AR%
< 0.005	36,502	1,342,168	89	0	09
- 0.1	30,898	1,135,582	69	4	69
- 0.2	6,006	223,701	17	4	259
- 0.5	6,993	256,584	31	13	419
- 1	3,512	129,053	27	18	689
1+	2.700	97.267	63	55	879
17					

 Despite smaller number of excess cases, a considerably larger proportion of the cases are radiation-associated

Related Issues Time-Since-Exposure

- Solid cancer
 - LSS data suggest that largest risks occur late in life regardless of age at exposure
 - EAR TSE model fits worse than attained-age model without an agex-by-TSE interaction
- Leukemia
 - TSE models motivated by EAR decrease and the belief that the excess disappeared after 15 to 20 years
 - TSE models involve significant agex-by-TSE interaction
 - Attained age models provide comparable fit without need for interaction

Related Issues Time-Constant ERR models

- LSS data clearly suggest that the ERR varies with attained age (time since exposure)
- It is difficult to conceive of a radiation carcinogenesis mechanism that would lead to time-constant increases in the ERR

39

Related Issues Latency

- Concept of limited usefulness
 - Definition is vague
 - Dose response implies reductions in the expected time from exposure to tumor
 - Minimum latency period is at least time from the final conversion into a malignant cell until diagnosis or death but could be longer
 - Mayak and early a-bomb survivor data indicate that radiation-associated leukemia deaths can occur within two to three years of exposure
 - LSS solid mortality data provide some suggestion of elevated risk 5 to 10 years after exposure for older cohort members
- Better to simply describe age-time patterns

Radiation and Other Risk Factors Confounding

- Other factor affects risk of outcome
- Radiation exposure/dose correlated with level of other risk factor
- Without adjustment apparent radiation effect estimate is distorted
- Likelihood of serious confounding is likely to be decreased if individual dose estimates are available
- Example: radiation, smoking, and lung cancer
 - Smoking is a major cause of lung cancer
 - If radiation exposure/dose and smoking are correlated failure to adjust for smoking will bias the radiation risk estimate
 - Magnitude of bias depends on size of smoking effect and magnitude of correlation between radiation and smoking

41

Radiation and Other Risk Factors Interactions

- · Radiation effect differs for different levels of some risk factor
 - Both radiation and other factor alter risk of outcome
- Unadjusted radiation effect estimate depends on distribution of other risk factor
- · Model joint effect of radiation and other risk factor
 - Requires considerable amount of data
 - Characterization of nature of interaction is quite difficult
- · Example: radiation, smoking and lung cancer
 - Smoking is a known strong causal factor for lung cancer
 - Radiation is also a causal factor
 - What is nature of the joint effect of radiation and smoking on excess risk

Radiation and Other Risk Factors Interaction Models

- Focus on relative risk models
 - ERR models are the most natural way to describe interactions
- Simple models
 - Additive: Rate = BKG (1 + ERR_{smk} + ERR_{rad})
 - ERR_{smk} and ERR_{rad} are relative to rates for unexposed non-smokers
 - Smoking (BKG* ERR_{smk}) and radiation (BKG* ERR_{rad}) excess rates are independent
 - Multiplicative: Rate = $BKG(1 + ERR_{smk}) (1 + ERR_{rad}) = BKG(1 + ERR_{smk} + ERR_{rad} + ERR_{smk}ERR_{rad})$
 - ERR_{rad} (ERR_{smk}) is the same for all levels of smoking (radiation exposure)
 - ERR_{rad} (ERR_{smk}) is relative to rates that include smoking (radiation) effect

43

Radiation and Other Risk Factors Interaction Models

- Simple generalized interaction model
 - Rate = BKG (1 + ERR_{smk} + ERR_{rad} + θ ERR_{smk} ERR_{rad})
 simple additive (θ=0) and multiplicative (θ=1) models are special cases
- Generalized additive model
 - Rate = BKG (1 + ERR_{smk} + ERR_{rad} *f(smk))
 f(smk) is a function of smoking behavior such that f(smk)=1 for non-smokers
- Generalized multiplicative model
 - Rate = BKG $(1 + ERR_{smk})(1 + ERR_{rad} *f(smk))$

Lung Cancer Rate Model

- Background rates (unexposed never smokers)
 - Sex-specific log quadratic spline in log age
 - Additional effects for year of birth, sex, city, location (in city or not)
- · Radiation ERR
 - ERR_{rad}= β_{sex} dose · age^{γ} · $exp{\alpha agex}$
- · Smoking effect
 - Dependent on smoking duration (dur), intensity(pkday),
 time since quitting (tsq) and pack-years (pkyr = dura · pkday)
 - ERR_{smk}= δ_{sex} pkyr exp{ ζ pkday + η log(dur) + φ log(1+tsq)}
- Generalized interaction
 - ERR_{rad(smk)} = ERR_{rad} · exp(ψ_1 pkday+ ψ_2 pkday²)

47

Result Smoking Excess Risk

	ERR/40packyr		Pack/day	Duration	Years since quitting
	Male	female		(power)	(power)
Smk Only	2.72	4.07	-0.40	0.74	-0.36
Additive	2.79	4.49	-0.37	0.78	-0.35
GenAdditive	2.63	3.95	-0.27	0.87	-0.35
Multipve	2.73	3.86	-0.40	0.72	-0.35
GenMultipv e	2.77	3.69	-0.25	0.74	-0.35

ERR/40packyr= Smoking ERR for those who smoke a pack a day for 40 years

Result						
Radiation	Excess	Risk				

	ERR/Gy	Attained age (power)	Age at exp %change/10yrs	FM Ratio
Rad Only	0.80	-1.85	23.33	4.15
Additive	1.03	-2.36	20.34	1.85
GenAdditive	0.64	-2.81	44.07	3.79
Multipve	0.68	-2.25	27.60	3.74
GenMultipve	0.57	-2.59	32.40	3.45

ERR/Gy= sex averaged linear dose response for those with attained age at 70 and exposed age at 30

LSS Radiation and Smoking in the LSS Summary

- Smoking effects on lung cancer were modeled by intensity(rate) and duration.
- Neither simple additive nor multiplicative models are sufficient to model the joint effect of smoking and radiation.
- The interaction effect appears to be larger at lower smoking rates than higher rates.

55

Related Issues Interpreting Site-Specific Risks

- Difficult to interpret and generalize effect modification
 - ERR gender effects mirror baseline gender effects, but baseline effects may be similar across populations
 - Age at exposure effects in the ERR may depend on birth cohort or period effects on baseline rates
 - Can also be problems in generalizing EAR patterns
- Site-specific differences in patterns are likely to exist
 - However much of observed variability is consistent with random variation
 - Formal statistical tests generally lack power to detect real differences
 - Statistical methods for shrinking estimates toward a central value are likely to lead to improved estimators of risk levels, gender effects and age-time patterns

Adjusted Site-Specific Risk Estimates A Simple/Simplistic Example

- LSS solid cancer mortality 1950 1997*
 - 86,572 in-city members of the LSS
 - 9.335 solid cancer deaths
 - ~440 associated with radiation exposure
- ERR model for all solid cancers with gender, attained age, and age at exposure effects (similar to incidence model)
- ERR models also fit for 18 specific "sites"
 - Site-specific ERR MLEs range from < 0.1 (oral cavity, pancreas, prostate) to 1 or more (breast, bladder, brain)
 - Estimated number of excess cases range from less than 3 (prostate oral cavity, cervix) to more than 80 (stomach, lung)

57

Adjusted Site-Specific Risk Estimates A Simple/Simplistic Example

- Use Bayesian methods to describe population mean and variance and produce adjusted site-specific risk estimates
 - "True" site-specific risk estimates taken as sample from a N(p, $\theta^2)$ distribution
 - Non-informative priors for ρ and θ^2
 - Posterior distributions for site specific risks and population parameters described using MCMC methods (WinBugs software) and summarized using the posterior mean values
- Simplifying assumption: effect modifiers have same form for all sites
 - Implies that only level of the risk (ERR) varies by site

- Unadjusted estimates range from 0.06 to 1.6
- Adjusted estimates range from 0.2 to 0.5
- Considerable reductions for largest risk estimates
- Suggests that statistical uncertainties are relatively large
- More realistic approach would allow nature of effect modification to vary across sites
 - Complicates calculations and summarization

59

Summary and Conclusions

- Accumulating data and modern analytical methods make it possible to investigate radiation effect modification in some detail
- Data are limited even in the largest cohort
 - Especially true when modeling interactions
- Both ERR and EAR descriptions provide equally important and complementary information
 - Attained age is an important factor in both
 - Generalization of age at exposure and gender effects can be difficult
- Pooled analyses may be useful in looking at effect modification
- More work is needed to address issues related to the interpretation of site-specific risks

Acknowledgments

- We stand on the shoulders of giants
 Gil Beebe, Seymour Jablon, Jim Neel, Jack Schull
- ABCC/RERF scientists and staff who made the ideas a reality George Darling, Howard Hamilton, Tetsuo Imada, Hiroo Kato, M. Kanemitsu, Bob Miller, Kenji Omae, Itsuzo Shigematsu and hundreds more
- Collaborators

Akio Awa, Harry Cullings, Saeko Fujiwara, Shochiro Fujita, Sachiyo Funamoto, Kyoji Furukawa, Kazunori Kodama, Charles Land, Kiyo Mabuchi, Nori Nakamura, Don Pierce, Elaine Ron, Yukiko Shimizu, Michiko Yamada

Result Fitting Models

	np	Deviance	р
Rad Only	19	9764.29	
Smk Only	22		
Additive	26	9412.82	<.001
GenAdditive	28	9404.05	<.001
Multipve	26	9410.16	<.001
GenMultipve	28	9400.66	<.001

63

Selected References

- Detailed solid cancer incidence analyses
 Preston et al Radiat. Res. 2007 168:1-64
- Leukemia mortality analyses
 Preston et al Radiat. Res. 2004 162: 377-389
- Solid cancer mortality analyses
 Preston et al Radiat. Res. 2003 160: 381-407
- Lung cancer incidence analyses
 Furukawa et al Radiat. Res. 2010 174(1):72-82
- Adjusted site-specific risks
 Pawel et al Radiat. Res. 2008 169: 87-98
 Preston et al Radiat. Res. 2010 174:816-824
- Overview of RERF cohorts and dose estimates
 Cullings et al Radiat. Res. 2006 166:219-254